1883F - You Are So Beautiful - CodeForces Solution


data structures

Please click on ads to support us..

C++ Code:

#include<bits/stdc++.h>
#include<math.h>
#define    ll    long long   int
#define ull unsigned long long int
#include <ext/pb_ds/detail/standard_policies.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;

typedef tree< ll, null_type, less<ll >, rb_tree_tag, tree_order_statistics_node_update> order_set;
#define fbo find_by_order
#define ook order_of_key
#define    F     first
#define    S    second
#define    all(x) (x).begin(),(x).end()
#define    print(res) cout<<#res<<" = ";for(auto x:res) cout<<x<<" "; cout<<endl
#define    see(res) cout<<#res<<" = "<<res<<endl
#define    fast ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define    pf      push_front
#define    pb      push_back
#define    NL      printf("\n")
#define    YES       printf("YES\n")
#define    NO        printf("NO\n")
#define    Yes       printf("Yes\n")
#define    No        printf("No\n")
#define tc int tc;scanf("%d",&tc);for(int cs=1;cs<=tc;cs++)

const ll mxn=2e6+6;
const ll mod=1e9+7;
const ll N=2e5+10;


int main( )

{


    tc

    {

        ll n ;
        cin>>n ;
        map<ll,ll>m1;
        map<ll,ll>m2;
        ll a[n+10] ;
        for(ll i=1 ; i<=n ; i++)
        {
            cin>>a[i];
            m1[a[i]]++ ;
        }

        ll ans = 0;
        ll extra = 0 ;
        ll cnt = 1;
        for(ll i=n ; i>=1 ; i--)
        {
            if(m2[a[i]]) ++extra;
            --m1[a[i]];
            ++m2[a[i]];
            if(m1[a[i]]==0) ans+=(cnt-extra);
            ++cnt;

        }

        cout<<ans<<endl;
        cout<<endl;

    }

    return 0;
}

//printf("Case %d: ",cs);


Comments

Submit
0 Comments
More Questions

733. Flood Fill
206. Reverse Linked List
83. Remove Duplicates from Sorted List
116. Populating Next Right Pointers in Each Node
145. Binary Tree Postorder Traversal
94. Binary Tree Inorder Traversal
101. Symmetric Tree
77. Combinations
46. Permutations
226. Invert Binary Tree
112. Path Sum
1556A - A Variety of Operations
136. Single Number
169. Majority Element
119. Pascal's Triangle II
409. Longest Palindrome
1574A - Regular Bracket Sequences
1574B - Combinatorics Homework
1567A - Domino Disaster
1593A - Elections
1607A - Linear Keyboard
EQUALCOIN Equal Coins
XOREQN Xor Equation
MAKEPAL Weird Palindrome Making
HILLSEQ Hill Sequence
MAXBRIDGE Maximise the bridges
WLDRPL Wildcard Replacement
1221. Split a String in Balanced Strings
1002. Find Common Characters
1602A - Two Subsequences